Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
dvh1dimat
Next ⟩
dvh1dim
Metamath Proof Explorer
Ascii
Unicode
Theorem
dvh1dimat
Description:
There exists an atom.
(Contributed by
NM
, 25-Apr-2015)
Ref
Expression
Hypotheses
dvh4dimat.h
⊢
H
=
LHyp
⁡
K
dvh4dimat.u
⊢
U
=
DVecH
⁡
K
⁡
W
dvh1dimat.a
⊢
A
=
LSAtoms
⁡
U
dvh1dimat.k
⊢
φ
→
K
∈
HL
∧
W
∈
H
Assertion
dvh1dimat
⊢
φ
→
∃
s
s
∈
A
Proof
Step
Hyp
Ref
Expression
1
dvh4dimat.h
⊢
H
=
LHyp
⁡
K
2
dvh4dimat.u
⊢
U
=
DVecH
⁡
K
⁡
W
3
dvh1dimat.a
⊢
A
=
LSAtoms
⁡
U
4
dvh1dimat.k
⊢
φ
→
K
∈
HL
∧
W
∈
H
5
eqid
⊢
oc
⁡
K
⁡
W
=
oc
⁡
K
⁡
W
6
eqid
⊢
DIsoH
⁡
K
⁡
W
=
DIsoH
⁡
K
⁡
W
7
1
5
6
2
3
4
dihat
⊢
φ
→
DIsoH
⁡
K
⁡
W
⁡
oc
⁡
K
⁡
W
∈
A
8
elex2
⊢
DIsoH
⁡
K
⁡
W
⁡
oc
⁡
K
⁡
W
∈
A
→
∃
s
s
∈
A
9
7
8
syl
⊢
φ
→
∃
s
s
∈
A