Metamath Proof Explorer


Theorem dvh1dimat

Description: There exists an atom. (Contributed by NM, 25-Apr-2015)

Ref Expression
Hypotheses dvh4dimat.h H=LHypK
dvh4dimat.u U=DVecHKW
dvh1dimat.a A=LSAtomsU
dvh1dimat.k φKHLWH
Assertion dvh1dimat φssA

Proof

Step Hyp Ref Expression
1 dvh4dimat.h H=LHypK
2 dvh4dimat.u U=DVecHKW
3 dvh1dimat.a A=LSAtomsU
4 dvh1dimat.k φKHLWH
5 eqid ocKW=ocKW
6 eqid DIsoHKW=DIsoHKW
7 1 5 6 2 3 4 dihat φDIsoHKWocKWA
8 elex2 DIsoHKWocKWAssA
9 7 8 syl φssA