Metamath Proof Explorer


Theorem dvh1dimat

Description: There exists an atom. (Contributed by NM, 25-Apr-2015)

Ref Expression
Hypotheses dvh4dimat.h H = LHyp K
dvh4dimat.u U = DVecH K W
dvh1dimat.a A = LSAtoms U
dvh1dimat.k φ K HL W H
Assertion dvh1dimat φ s s A

Proof

Step Hyp Ref Expression
1 dvh4dimat.h H = LHyp K
2 dvh4dimat.u U = DVecH K W
3 dvh1dimat.a A = LSAtoms U
4 dvh1dimat.k φ K HL W H
5 eqid oc K W = oc K W
6 eqid DIsoH K W = DIsoH K W
7 1 5 6 2 3 4 dihat φ DIsoH K W oc K W A
8 elex2 DIsoH K W oc K W A s s A
9 7 8 syl φ s s A