Metamath Proof Explorer


Theorem dvhvadd

Description: The vector sum operation for the constructed full vector space H. (Contributed by NM, 11-Feb-2014) (Revised by Mario Carneiro, 23-Jun-2014)

Ref Expression
Hypotheses dvhvadd.h H = LHyp K
dvhvadd.t T = LTrn K W
dvhvadd.e E = TEndo K W
dvhvadd.u U = DVecH K W
dvhvadd.f D = Scalar U
dvhvadd.s + ˙ = + U
dvhvadd.p ˙ = + D
Assertion dvhvadd K HL W H F T × E G T × E F + ˙ G = 1 st F 1 st G 2 nd F ˙ 2 nd G

Proof

Step Hyp Ref Expression
1 dvhvadd.h H = LHyp K
2 dvhvadd.t T = LTrn K W
3 dvhvadd.e E = TEndo K W
4 dvhvadd.u U = DVecH K W
5 dvhvadd.f D = Scalar U
6 dvhvadd.s + ˙ = + U
7 dvhvadd.p ˙ = + D
8 eqid f T × E , g T × E 1 st f 1 st g 2 nd f ˙ 2 nd g = f T × E , g T × E 1 st f 1 st g 2 nd f ˙ 2 nd g
9 1 2 3 4 5 7 8 6 dvhfvadd K HL W H + ˙ = f T × E , g T × E 1 st f 1 st g 2 nd f ˙ 2 nd g
10 9 oveqd K HL W H F + ˙ G = F f T × E , g T × E 1 st f 1 st g 2 nd f ˙ 2 nd g G
11 8 dvhvaddval F T × E G T × E F f T × E , g T × E 1 st f 1 st g 2 nd f ˙ 2 nd g G = 1 st F 1 st G 2 nd F ˙ 2 nd G
12 10 11 sylan9eq K HL W H F T × E G T × E F + ˙ G = 1 st F 1 st G 2 nd F ˙ 2 nd G