Metamath Proof Explorer


Theorem dvhvadd

Description: The vector sum operation for the constructed full vector space H. (Contributed by NM, 11-Feb-2014) (Revised by Mario Carneiro, 23-Jun-2014)

Ref Expression
Hypotheses dvhvadd.h H=LHypK
dvhvadd.t T=LTrnKW
dvhvadd.e E=TEndoKW
dvhvadd.u U=DVecHKW
dvhvadd.f D=ScalarU
dvhvadd.s +˙=+U
dvhvadd.p ˙=+D
Assertion dvhvadd KHLWHFT×EGT×EF+˙G=1stF1stG2ndF˙2ndG

Proof

Step Hyp Ref Expression
1 dvhvadd.h H=LHypK
2 dvhvadd.t T=LTrnKW
3 dvhvadd.e E=TEndoKW
4 dvhvadd.u U=DVecHKW
5 dvhvadd.f D=ScalarU
6 dvhvadd.s +˙=+U
7 dvhvadd.p ˙=+D
8 eqid fT×E,gT×E1stf1stg2ndf˙2ndg=fT×E,gT×E1stf1stg2ndf˙2ndg
9 1 2 3 4 5 7 8 6 dvhfvadd KHLWH+˙=fT×E,gT×E1stf1stg2ndf˙2ndg
10 9 oveqd KHLWHF+˙G=FfT×E,gT×E1stf1stg2ndf˙2ndgG
11 8 dvhvaddval FT×EGT×EFfT×E,gT×E1stf1stg2ndf˙2ndgG=1stF1stG2ndF˙2ndG
12 10 11 sylan9eq KHLWHFT×EGT×EF+˙G=1stF1stG2ndF˙2ndG