Metamath Proof Explorer


Theorem dvmptre

Description: Function-builder for derivative, real part. (Contributed by Mario Carneiro, 1-Sep-2014)

Ref Expression
Hypotheses dvmptcj.a φxXA
dvmptcj.b φxXBV
dvmptcj.da φdxXAdx=xXB
Assertion dvmptre φdxXAdx=xXB

Proof

Step Hyp Ref Expression
1 dvmptcj.a φxXA
2 dvmptcj.b φxXBV
3 dvmptcj.da φdxXAdx=xXB
4 reelprrecn
5 4 a1i φ
6 1 cjcld φxXA
7 1 6 addcld φxXA+A
8 5 1 2 3 dvmptcl φxXB
9 8 cjcld φxXB
10 8 9 addcld φxXB+B
11 1 2 3 dvmptcj φdxXAdx=xXB
12 5 1 2 3 6 9 11 dvmptadd φdxXA+Adx=xXB+B
13 halfcn 12
14 13 a1i φ12
15 5 7 10 12 14 dvmptcmul φdxX12A+Adx=xX12B+B
16 reval AA=A+A2
17 1 16 syl φxXA=A+A2
18 2cn 2
19 2ne0 20
20 divrec2 A+A220A+A2=12A+A
21 18 19 20 mp3an23 A+AA+A2=12A+A
22 7 21 syl φxXA+A2=12A+A
23 17 22 eqtrd φxXA=12A+A
24 23 mpteq2dva φxXA=xX12A+A
25 24 oveq2d φdxXAdx=dxX12A+Adx
26 reval BB=B+B2
27 8 26 syl φxXB=B+B2
28 divrec2 B+B220B+B2=12B+B
29 18 19 28 mp3an23 B+BB+B2=12B+B
30 10 29 syl φxXB+B2=12B+B
31 27 30 eqtrd φxXB=12B+B
32 31 mpteq2dva φxXB=xX12B+B
33 15 25 32 3eqtr4d φdxXAdx=xXB