Metamath Proof Explorer


Theorem dvres2

Description: Restriction of the base set of a derivative. The primary application of this theorem says that if a function is complex-differentiable then it is also real-differentiable. Unlike dvres , there is no simple reverse relation relating real-differentiable functions to complex differentiability, and indeed there are functions like Re ( x ) which are everywhere real-differentiable but nowhere complex-differentiable.) (Contributed by Mario Carneiro, 9-Feb-2015)

Ref Expression
Assertion dvres2 SF:AASBSFSBBDFB

Proof

Step Hyp Ref Expression
1 relres RelFSB
2 1 a1i SF:AASBSRelFSB
3 eqid TopOpenfld=TopOpenfld
4 eqid TopOpenfld𝑡S=TopOpenfld𝑡S
5 eqid zAxFzFxzx=zAxFzFxzx
6 simp1l SF:AASBSxBxFSyS
7 simp1r SF:AASBSxBxFSyF:A
8 simp2l SF:AASBSxBxFSyAS
9 simp2r SF:AASBSxBxFSyBS
10 simp3r SF:AASBSxBxFSyxFSy
11 6 7 8 dvcl SF:AASBSxBxFSyxFSyy
12 10 11 mpdan SF:AASBSxBxFSyy
13 simp3l SF:AASBSxBxFSyxB
14 3 4 5 6 7 8 9 12 10 13 dvres2lem SF:AASBSxBxFSyxFBBy
15 14 3expia SF:AASBSxBxFSyxFBBy
16 vex yV
17 16 brresi xFSByxBxFSy
18 df-br xFSByxyFSB
19 17 18 bitr3i xBxFSyxyFSB
20 df-br xFBByxyFBB
21 15 19 20 3imtr3g SF:AASBSxyFSBxyFBB
22 2 21 relssdv SF:AASBSFSBBDFB