Metamath Proof Explorer


Theorem dvres2

Description: Restriction of the base set of a derivative. The primary application of this theorem says that if a function is complex-differentiable then it is also real-differentiable. Unlike dvres , there is no simple reverse relation relating real-differentiable functions to complex differentiability, and indeed there are functions like Re ( x ) which are everywhere real-differentiable but nowhere complex-differentiable.) (Contributed by Mario Carneiro, 9-Feb-2015)

Ref Expression
Assertion dvres2 ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴𝑆𝐵𝑆 ) ) → ( ( 𝑆 D 𝐹 ) ↾ 𝐵 ) ⊆ ( 𝐵 D ( 𝐹𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 relres Rel ( ( 𝑆 D 𝐹 ) ↾ 𝐵 )
2 1 a1i ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴𝑆𝐵𝑆 ) ) → Rel ( ( 𝑆 D 𝐹 ) ↾ 𝐵 ) )
3 eqid ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld )
4 eqid ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) = ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 )
5 eqid ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹𝑧 ) − ( 𝐹𝑥 ) ) / ( 𝑧𝑥 ) ) ) = ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹𝑧 ) − ( 𝐹𝑥 ) ) / ( 𝑧𝑥 ) ) )
6 simp1l ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴𝑆𝐵𝑆 ) ∧ ( 𝑥𝐵𝑥 ( 𝑆 D 𝐹 ) 𝑦 ) ) → 𝑆 ⊆ ℂ )
7 simp1r ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴𝑆𝐵𝑆 ) ∧ ( 𝑥𝐵𝑥 ( 𝑆 D 𝐹 ) 𝑦 ) ) → 𝐹 : 𝐴 ⟶ ℂ )
8 simp2l ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴𝑆𝐵𝑆 ) ∧ ( 𝑥𝐵𝑥 ( 𝑆 D 𝐹 ) 𝑦 ) ) → 𝐴𝑆 )
9 simp2r ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴𝑆𝐵𝑆 ) ∧ ( 𝑥𝐵𝑥 ( 𝑆 D 𝐹 ) 𝑦 ) ) → 𝐵𝑆 )
10 simp3r ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴𝑆𝐵𝑆 ) ∧ ( 𝑥𝐵𝑥 ( 𝑆 D 𝐹 ) 𝑦 ) ) → 𝑥 ( 𝑆 D 𝐹 ) 𝑦 )
11 6 7 8 dvcl ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴𝑆𝐵𝑆 ) ∧ ( 𝑥𝐵𝑥 ( 𝑆 D 𝐹 ) 𝑦 ) ) ∧ 𝑥 ( 𝑆 D 𝐹 ) 𝑦 ) → 𝑦 ∈ ℂ )
12 10 11 mpdan ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴𝑆𝐵𝑆 ) ∧ ( 𝑥𝐵𝑥 ( 𝑆 D 𝐹 ) 𝑦 ) ) → 𝑦 ∈ ℂ )
13 simp3l ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴𝑆𝐵𝑆 ) ∧ ( 𝑥𝐵𝑥 ( 𝑆 D 𝐹 ) 𝑦 ) ) → 𝑥𝐵 )
14 3 4 5 6 7 8 9 12 10 13 dvres2lem ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴𝑆𝐵𝑆 ) ∧ ( 𝑥𝐵𝑥 ( 𝑆 D 𝐹 ) 𝑦 ) ) → 𝑥 ( 𝐵 D ( 𝐹𝐵 ) ) 𝑦 )
15 14 3expia ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴𝑆𝐵𝑆 ) ) → ( ( 𝑥𝐵𝑥 ( 𝑆 D 𝐹 ) 𝑦 ) → 𝑥 ( 𝐵 D ( 𝐹𝐵 ) ) 𝑦 ) )
16 vex 𝑦 ∈ V
17 16 brresi ( 𝑥 ( ( 𝑆 D 𝐹 ) ↾ 𝐵 ) 𝑦 ↔ ( 𝑥𝐵𝑥 ( 𝑆 D 𝐹 ) 𝑦 ) )
18 df-br ( 𝑥 ( ( 𝑆 D 𝐹 ) ↾ 𝐵 ) 𝑦 ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ ( ( 𝑆 D 𝐹 ) ↾ 𝐵 ) )
19 17 18 bitr3i ( ( 𝑥𝐵𝑥 ( 𝑆 D 𝐹 ) 𝑦 ) ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ ( ( 𝑆 D 𝐹 ) ↾ 𝐵 ) )
20 df-br ( 𝑥 ( 𝐵 D ( 𝐹𝐵 ) ) 𝑦 ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐵 D ( 𝐹𝐵 ) ) )
21 15 19 20 3imtr3g ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴𝑆𝐵𝑆 ) ) → ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( ( 𝑆 D 𝐹 ) ↾ 𝐵 ) → ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐵 D ( 𝐹𝐵 ) ) ) )
22 2 21 relssdv ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴𝑆𝐵𝑆 ) ) → ( ( 𝑆 D 𝐹 ) ↾ 𝐵 ) ⊆ ( 𝐵 D ( 𝐹𝐵 ) ) )