Metamath Proof Explorer


Theorem ecopover

Description: Assuming that operation F is commutative (second hypothesis), closed (third hypothesis), associative (fourth hypothesis), and has the cancellation property (fifth hypothesis), show that the relation .~ , specified by the first hypothesis, is an equivalence relation. (Contributed by NM, 16-Feb-1996) (Revised by Mario Carneiro, 12-Aug-2015) (Proof shortened by AV, 1-May-2021)

Ref Expression
Hypotheses ecopopr.1 ˙=xy|xS×SyS×Szwvux=zwy=vuz+˙u=w+˙v
ecopopr.com x+˙y=y+˙x
ecopopr.cl xSySx+˙yS
ecopopr.ass x+˙y+˙z=x+˙y+˙z
ecopopr.can xSySx+˙y=x+˙zy=z
Assertion ecopover ˙ErS×S

Proof

Step Hyp Ref Expression
1 ecopopr.1 ˙=xy|xS×SyS×Szwvux=zwy=vuz+˙u=w+˙v
2 ecopopr.com x+˙y=y+˙x
3 ecopopr.cl xSySx+˙yS
4 ecopopr.ass x+˙y+˙z=x+˙y+˙z
5 ecopopr.can xSySx+˙y=x+˙zy=z
6 1 relopabiv Rel˙
7 1 2 ecopovsym f˙gg˙f
8 1 2 3 4 5 ecopovtrn f˙gg˙hf˙h
9 vex gV
10 vex hV
11 9 10 2 caovcom g+˙h=h+˙g
12 1 ecopoveq gShSgShSgh˙ghg+˙h=h+˙g
13 11 12 mpbiri gShSgShSgh˙gh
14 13 anidms gShSgh˙gh
15 14 rgen2 gShSgh˙gh
16 breq12 f=ghf=ghf˙fgh˙gh
17 16 anidms f=ghf˙fgh˙gh
18 17 ralxp fS×Sf˙fgShSgh˙gh
19 15 18 mpbir fS×Sf˙f
20 19 rspec fS×Sf˙f
21 opabssxp xy|xS×SyS×Szwvux=zwy=vuz+˙u=w+˙vS×S×S×S
22 1 21 eqsstri ˙S×S×S×S
23 22 ssbri f˙ffS×S×S×Sf
24 brxp fS×S×S×SffS×SfS×S
25 24 simplbi fS×S×S×SffS×S
26 23 25 syl f˙ffS×S
27 20 26 impbii fS×Sf˙f
28 6 7 8 27 iseri ˙ErS×S