Description: Assuming that operation F is commutative (second hypothesis), closed (third hypothesis), associative (fourth hypothesis), and has the cancellation property (fifth hypothesis), show that the relation .~ , specified by the first hypothesis, is an equivalence relation. (Contributed by NM, 16-Feb-1996) (Revised by Mario Carneiro, 12-Aug-2015) (Proof shortened by AV, 1-May-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ecopopr.1 | |
|
ecopopr.com | |
||
ecopopr.cl | |
||
ecopopr.ass | |
||
ecopopr.can | |
||
Assertion | ecopover | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ecopopr.1 | |
|
2 | ecopopr.com | |
|
3 | ecopopr.cl | |
|
4 | ecopopr.ass | |
|
5 | ecopopr.can | |
|
6 | 1 | relopabiv | |
7 | 1 2 | ecopovsym | |
8 | 1 2 3 4 5 | ecopovtrn | |
9 | vex | |
|
10 | vex | |
|
11 | 9 10 2 | caovcom | |
12 | 1 | ecopoveq | |
13 | 11 12 | mpbiri | |
14 | 13 | anidms | |
15 | 14 | rgen2 | |
16 | breq12 | |
|
17 | 16 | anidms | |
18 | 17 | ralxp | |
19 | 15 18 | mpbir | |
20 | 19 | rspec | |
21 | opabssxp | |
|
22 | 1 21 | eqsstri | |
23 | 22 | ssbri | |
24 | brxp | |
|
25 | 24 | simplbi | |
26 | 23 25 | syl | |
27 | 20 26 | impbii | |
28 | 6 7 8 27 | iseri | |