Metamath Proof Explorer


Theorem ecopovtrn

Description: Assuming that operation F is commutative (second hypothesis), closed (third hypothesis), associative (fourth hypothesis), and has the cancellation property (fifth hypothesis), show that the relation .~ , specified by the first hypothesis, is transitive. (Contributed by NM, 11-Feb-1996) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Hypotheses ecopopr.1 ˙=xy|xS×SyS×Szwvux=zwy=vuz+˙u=w+˙v
ecopopr.com x+˙y=y+˙x
ecopopr.cl xSySx+˙yS
ecopopr.ass x+˙y+˙z=x+˙y+˙z
ecopopr.can xSySx+˙y=x+˙zy=z
Assertion ecopovtrn A˙BB˙CA˙C

Proof

Step Hyp Ref Expression
1 ecopopr.1 ˙=xy|xS×SyS×Szwvux=zwy=vuz+˙u=w+˙v
2 ecopopr.com x+˙y=y+˙x
3 ecopopr.cl xSySx+˙yS
4 ecopopr.ass x+˙y+˙z=x+˙y+˙z
5 ecopopr.can xSySx+˙y=x+˙zy=z
6 opabssxp xy|xS×SyS×Szwvux=zwy=vuz+˙u=w+˙vS×S×S×S
7 1 6 eqsstri ˙S×S×S×S
8 7 brel A˙BAS×SBS×S
9 8 simpld A˙BAS×S
10 7 brel B˙CBS×SCS×S
11 9 10 anim12i A˙BB˙CAS×SBS×SCS×S
12 3anass AS×SBS×SCS×SAS×SBS×SCS×S
13 11 12 sylibr A˙BB˙CAS×SBS×SCS×S
14 eqid S×S=S×S
15 breq1 fg=Afg˙htA˙ht
16 15 anbi1d fg=Afg˙htht˙srA˙htht˙sr
17 breq1 fg=Afg˙srA˙sr
18 16 17 imbi12d fg=Afg˙htht˙srfg˙srA˙htht˙srA˙sr
19 breq2 ht=BA˙htA˙B
20 breq1 ht=Bht˙srB˙sr
21 19 20 anbi12d ht=BA˙htht˙srA˙BB˙sr
22 21 imbi1d ht=BA˙htht˙srA˙srA˙BB˙srA˙sr
23 breq2 sr=CB˙srB˙C
24 23 anbi2d sr=CA˙BB˙srA˙BB˙C
25 breq2 sr=CA˙srA˙C
26 24 25 imbi12d sr=CA˙BB˙srA˙srA˙BB˙CA˙C
27 1 ecopoveq fSgShStSfg˙htf+˙t=g+˙h
28 27 3adant3 fSgShStSsSrSfg˙htf+˙t=g+˙h
29 1 ecopoveq hStSsSrSht˙srh+˙r=t+˙s
30 29 3adant1 fSgShStSsSrSht˙srh+˙r=t+˙s
31 28 30 anbi12d fSgShStSsSrSfg˙htht˙srf+˙t=g+˙hh+˙r=t+˙s
32 oveq12 f+˙t=g+˙hh+˙r=t+˙sf+˙t+˙h+˙r=g+˙h+˙t+˙s
33 vex hV
34 vex tV
35 vex fV
36 vex rV
37 33 34 35 2 4 36 caov411 h+˙t+˙f+˙r=f+˙t+˙h+˙r
38 vex gV
39 vex sV
40 38 34 33 2 4 39 caov411 g+˙t+˙h+˙s=h+˙t+˙g+˙s
41 38 34 33 2 4 39 caov4 g+˙t+˙h+˙s=g+˙h+˙t+˙s
42 40 41 eqtr3i h+˙t+˙g+˙s=g+˙h+˙t+˙s
43 32 37 42 3eqtr4g f+˙t=g+˙hh+˙r=t+˙sh+˙t+˙f+˙r=h+˙t+˙g+˙s
44 31 43 biimtrdi fSgShStSsSrSfg˙htht˙srh+˙t+˙f+˙r=h+˙t+˙g+˙s
45 3 caovcl hStSh+˙tS
46 3 caovcl fSrSf+˙rS
47 ovex g+˙sV
48 47 5 caovcan h+˙tSf+˙rSh+˙t+˙f+˙r=h+˙t+˙g+˙sf+˙r=g+˙s
49 45 46 48 syl2an hStSfSrSh+˙t+˙f+˙r=h+˙t+˙g+˙sf+˙r=g+˙s
50 49 3impb hStSfSrSh+˙t+˙f+˙r=h+˙t+˙g+˙sf+˙r=g+˙s
51 50 3com12 fShStSrSh+˙t+˙f+˙r=h+˙t+˙g+˙sf+˙r=g+˙s
52 51 3adant3l fShStSsSrSh+˙t+˙f+˙r=h+˙t+˙g+˙sf+˙r=g+˙s
53 52 3adant1r fSgShStSsSrSh+˙t+˙f+˙r=h+˙t+˙g+˙sf+˙r=g+˙s
54 44 53 syld fSgShStSsSrSfg˙htht˙srf+˙r=g+˙s
55 1 ecopoveq fSgSsSrSfg˙srf+˙r=g+˙s
56 55 3adant2 fSgShStSsSrSfg˙srf+˙r=g+˙s
57 54 56 sylibrd fSgShStSsSrSfg˙htht˙srfg˙sr
58 14 18 22 26 57 3optocl AS×SBS×SCS×SA˙BB˙CA˙C
59 13 58 mpcom A˙BB˙CA˙C