Description: Assuming that operation F is commutative (second hypothesis), closed (third hypothesis), associative (fourth hypothesis), and has the cancellation property (fifth hypothesis), show that the relation .~ , specified by the first hypothesis, is transitive. (Contributed by NM, 11-Feb-1996) (Revised by Mario Carneiro, 26-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ecopopr.1 | |
|
ecopopr.com | |
||
ecopopr.cl | |
||
ecopopr.ass | |
||
ecopopr.can | |
||
Assertion | ecopovtrn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ecopopr.1 | |
|
2 | ecopopr.com | |
|
3 | ecopopr.cl | |
|
4 | ecopopr.ass | |
|
5 | ecopopr.can | |
|
6 | opabssxp | |
|
7 | 1 6 | eqsstri | |
8 | 7 | brel | |
9 | 8 | simpld | |
10 | 7 | brel | |
11 | 9 10 | anim12i | |
12 | 3anass | |
|
13 | 11 12 | sylibr | |
14 | eqid | |
|
15 | breq1 | |
|
16 | 15 | anbi1d | |
17 | breq1 | |
|
18 | 16 17 | imbi12d | |
19 | breq2 | |
|
20 | breq1 | |
|
21 | 19 20 | anbi12d | |
22 | 21 | imbi1d | |
23 | breq2 | |
|
24 | 23 | anbi2d | |
25 | breq2 | |
|
26 | 24 25 | imbi12d | |
27 | 1 | ecopoveq | |
28 | 27 | 3adant3 | |
29 | 1 | ecopoveq | |
30 | 29 | 3adant1 | |
31 | 28 30 | anbi12d | |
32 | oveq12 | |
|
33 | vex | |
|
34 | vex | |
|
35 | vex | |
|
36 | vex | |
|
37 | 33 34 35 2 4 36 | caov411 | |
38 | vex | |
|
39 | vex | |
|
40 | 38 34 33 2 4 39 | caov411 | |
41 | 38 34 33 2 4 39 | caov4 | |
42 | 40 41 | eqtr3i | |
43 | 32 37 42 | 3eqtr4g | |
44 | 31 43 | biimtrdi | |
45 | 3 | caovcl | |
46 | 3 | caovcl | |
47 | ovex | |
|
48 | 47 5 | caovcan | |
49 | 45 46 48 | syl2an | |
50 | 49 | 3impb | |
51 | 50 | 3com12 | |
52 | 51 | 3adant3l | |
53 | 52 | 3adant1r | |
54 | 44 53 | syld | |
55 | 1 | ecopoveq | |
56 | 55 | 3adant2 | |
57 | 54 56 | sylibrd | |
58 | 14 18 22 26 57 | 3optocl | |
59 | 13 58 | mpcom | |