Metamath Proof Explorer


Theorem eff

Description: Domain and codomain of the exponential function. (Contributed by Paul Chapman, 22-Oct-2007) (Proof shortened by Mario Carneiro, 28-Apr-2014)

Ref Expression
Assertion eff exp:

Proof

Step Hyp Ref Expression
1 df-ef exp=xk0xkk!
2 nn0uz 0=0
3 0zd x0
4 eqid n0xnn!=n0xnn!
5 4 eftval k0n0xnn!k=xkk!
6 5 adantl xk0n0xnn!k=xkk!
7 eftcl xk0xkk!
8 4 efcllem xseq0+n0xnn!dom
9 2 3 6 7 8 isumcl xk0xkk!
10 1 9 fmpti exp: