Metamath Proof Explorer


Theorem efgt1p2

Description: The exponential of a positive real number is greater than the sum of the first three terms of the series expansion. (Contributed by Mario Carneiro, 15-Sep-2014)

Ref Expression
Assertion efgt1p2 A+1+A+A22<eA

Proof

Step Hyp Ref Expression
1 nn0uz 0=0
2 1nn0 10
3 2 a1i A+10
4 df-2 2=1+1
5 rpcn A+A
6 0nn0 00
7 6 a1i A00
8 1e0p1 1=0+1
9 0z 0
10 eqid n0Ann!=n0Ann!
11 10 eftval 00n0Ann!0=A00!
12 6 11 ax-mp n0Ann!0=A00!
13 eft0val AA00!=1
14 12 13 eqtrid An0Ann!0=1
15 9 14 seq1i Aseq0+n0Ann!0=1
16 10 eftval 10n0Ann!1=A11!
17 2 16 ax-mp n0Ann!1=A11!
18 fac1 1!=1
19 18 oveq2i A11!=A11
20 exp1 AA1=A
21 20 oveq1d AA11=A1
22 div1 AA1=A
23 21 22 eqtrd AA11=A
24 19 23 eqtrid AA11!=A
25 17 24 eqtrid An0Ann!1=A
26 1 7 8 15 25 seqp1d Aseq0+n0Ann!1=1+A
27 5 26 syl A+seq0+n0Ann!1=1+A
28 2nn0 20
29 10 eftval 20n0Ann!2=A22!
30 28 29 ax-mp n0Ann!2=A22!
31 fac2 2!=2
32 31 oveq2i A22!=A22
33 30 32 eqtri n0Ann!2=A22
34 33 a1i A+n0Ann!2=A22
35 1 3 4 27 34 seqp1d A+seq0+n0Ann!2=1+A+A22
36 id A+A+
37 28 a1i A+20
38 10 36 37 effsumlt A+seq0+n0Ann!2<eA
39 35 38 eqbrtrrd A+1+A+A22<eA