Metamath Proof Explorer


Theorem efieq

Description: The exponentials of two imaginary numbers are equal iff their sine and cosine components are equal. (Contributed by Paul Chapman, 15-Mar-2008)

Ref Expression
Assertion efieq ABeiA=eiBcosA=cosBsinA=sinB

Proof

Step Hyp Ref Expression
1 recn AA
2 recn BB
3 efival AeiA=cosA+isinA
4 efival BeiB=cosB+isinB
5 3 4 eqeqan12d ABeiA=eiBcosA+isinA=cosB+isinB
6 1 2 5 syl2an ABeiA=eiBcosA+isinA=cosB+isinB
7 recoscl AcosA
8 resincl AsinA
9 7 8 jca AcosAsinA
10 recoscl BcosB
11 resincl BsinB
12 10 11 jca BcosBsinB
13 cru cosAsinAcosBsinBcosA+isinA=cosB+isinBcosA=cosBsinA=sinB
14 9 12 13 syl2an ABcosA+isinA=cosB+isinBcosA=cosBsinA=sinB
15 6 14 bitrd ABeiA=eiBcosA=cosBsinA=sinB