Metamath Proof Explorer


Theorem egt2lt3

Description: Euler's constant _e = 2.71828... is strictly bounded below by 2 and above by 3. (Contributed by NM, 28-Nov-2008) (Revised by Mario Carneiro, 29-Apr-2014)

Ref Expression
Assertion egt2lt3 2<ee<3

Proof

Step Hyp Ref Expression
1 eqid n212n=n212n
2 eqid n01n!=n01n!
3 1 2 ege2le3 2ee3
4 3 simpli 2e
5 eirr e
6 5 neli ¬e
7 nnq ee
8 6 7 mto ¬e
9 2nn 2
10 eleq1 e=2e2
11 9 10 mpbiri e=2e
12 11 necon3bi ¬ee2
13 8 12 ax-mp e2
14 2re 2
15 ere e
16 14 15 ltleni 2<e2ee2
17 4 13 16 mpbir2an 2<e
18 3 simpri e3
19 3nn 3
20 eleq1 3=e3e
21 19 20 mpbii 3=ee
22 21 necon3bi ¬e3e
23 8 22 ax-mp 3e
24 3re 3
25 15 24 ltleni e<3e33e
26 18 23 25 mpbir2an e<3
27 17 26 pm3.2i 2<ee<3