Metamath Proof Explorer


Theorem el2mpocl

Description: If the operation value of the operation value of two nested maps-to notation is not empty, all involved arguments belong to the corresponding base classes of the maps-to notations. Using implicit substitution. (Contributed by AV, 21-May-2021)

Ref Expression
Hypotheses el2mpocl.o O=xA,yBsC,tDE
el2mpocl.e x=Xy=YC=FD=G
Assertion el2mpocl xAyBCUDVWSXOYTXAYBSFTG

Proof

Step Hyp Ref Expression
1 el2mpocl.o O=xA,yBsC,tDE
2 el2mpocl.e x=Xy=YC=FD=G
3 1 el2mpocsbcl xAyBCUDVWSXOYTXAYBSX/xY/yCTX/xY/yD
4 simpl XAYBXA
5 simplr XAYBx=XYB
6 2 simpld x=Xy=YC=F
7 6 adantll XAYBx=Xy=YC=F
8 5 7 csbied XAYBx=XY/yC=F
9 4 8 csbied XAYBX/xY/yC=F
10 9 eleq2d XAYBSX/xY/yCSF
11 2 simprd x=Xy=YD=G
12 11 adantll XAYBx=Xy=YD=G
13 5 12 csbied XAYBx=XY/yD=G
14 4 13 csbied XAYBX/xY/yD=G
15 14 eleq2d XAYBTX/xY/yDTG
16 10 15 anbi12d XAYBSX/xY/yCTX/xY/yDSFTG
17 16 biimpd XAYBSX/xY/yCTX/xY/yDSFTG
18 17 imdistani XAYBSX/xY/yCTX/xY/yDXAYBSFTG
19 3 18 syl6 xAyBCUDVWSXOYTXAYBSFTG