Metamath Proof Explorer


Theorem el2mpocsbcl

Description: If the operation value of the operation value of two nested maps-to notation is not empty, all involved arguments belong to the corresponding base classes of the maps-to notations. (Contributed by AV, 21-May-2021)

Ref Expression
Hypothesis el2mpocsbcl.o O=xA,yBsC,tDE
Assertion el2mpocsbcl xAyBCUDVWSXOYTXAYBSX/xY/yCTX/xY/yD

Proof

Step Hyp Ref Expression
1 el2mpocsbcl.o O=xA,yBsC,tDE
2 simpl XAYBxAyBCUDVWSXOYTXAYB
3 nfcv _asC,tDE
4 nfcv _bsC,tDE
5 nfcsb1v _xa/xb/yC
6 nfcsb1v _xa/xb/yD
7 nfcsb1v _xa/xb/yE
8 5 6 7 nfmpo _xsa/xb/yC,ta/xb/yDa/xb/yE
9 nfcv _ya
10 nfcsb1v _yb/yC
11 9 10 nfcsbw _ya/xb/yC
12 nfcsb1v _yb/yD
13 9 12 nfcsbw _ya/xb/yD
14 nfcsb1v _yb/yE
15 9 14 nfcsbw _ya/xb/yE
16 11 13 15 nfmpo _ysa/xb/yC,ta/xb/yDa/xb/yE
17 csbeq1a x=aC=a/xC
18 csbeq1a y=bC=b/yC
19 18 csbeq2dv y=ba/xC=a/xb/yC
20 17 19 sylan9eq x=ay=bC=a/xb/yC
21 csbeq1a x=aD=a/xD
22 csbeq1a y=bD=b/yD
23 22 csbeq2dv y=ba/xD=a/xb/yD
24 21 23 sylan9eq x=ay=bD=a/xb/yD
25 csbeq1a x=aE=a/xE
26 csbeq1a y=bE=b/yE
27 26 csbeq2dv y=ba/xE=a/xb/yE
28 25 27 sylan9eq x=ay=bE=a/xb/yE
29 20 24 28 mpoeq123dv x=ay=bsC,tDE=sa/xb/yC,ta/xb/yDa/xb/yE
30 3 4 8 16 29 cbvmpo xA,yBsC,tDE=aA,bBsa/xb/yC,ta/xb/yDa/xb/yE
31 1 30 eqtri O=aA,bBsa/xb/yC,ta/xb/yDa/xb/yE
32 31 a1i xAyBCUDVXAYBO=aA,bBsa/xb/yC,ta/xb/yDa/xb/yE
33 csbeq1 a=Xa/xb/yC=X/xb/yC
34 33 adantr a=Xb=Ya/xb/yC=X/xb/yC
35 csbeq1 b=Yb/yC=Y/yC
36 35 adantl a=Xb=Yb/yC=Y/yC
37 36 csbeq2dv a=Xb=YX/xb/yC=X/xY/yC
38 34 37 eqtrd a=Xb=Ya/xb/yC=X/xY/yC
39 csbeq1 a=Xa/xb/yD=X/xb/yD
40 39 adantr a=Xb=Ya/xb/yD=X/xb/yD
41 csbeq1 b=Yb/yD=Y/yD
42 41 adantl a=Xb=Yb/yD=Y/yD
43 42 csbeq2dv a=Xb=YX/xb/yD=X/xY/yD
44 40 43 eqtrd a=Xb=Ya/xb/yD=X/xY/yD
45 csbeq1 a=Xa/xb/yE=X/xb/yE
46 45 adantr a=Xb=Ya/xb/yE=X/xb/yE
47 csbeq1 b=Yb/yE=Y/yE
48 47 adantl a=Xb=Yb/yE=Y/yE
49 48 csbeq2dv a=Xb=YX/xb/yE=X/xY/yE
50 46 49 eqtrd a=Xb=Ya/xb/yE=X/xY/yE
51 38 44 50 mpoeq123dv a=Xb=Ysa/xb/yC,ta/xb/yDa/xb/yE=sX/xY/yC,tX/xY/yDX/xY/yE
52 51 adantl xAyBCUDVXAYBa=Xb=Ysa/xb/yC,ta/xb/yDa/xb/yE=sX/xY/yC,tX/xY/yDX/xY/yE
53 simpl XAYBXA
54 53 adantl xAyBCUDVXAYBXA
55 simpr XAYBYB
56 55 adantl xAyBCUDVXAYBYB
57 simpl CUDVCU
58 57 ralimi yBCUDVyBCU
59 rspcsbela YByBCUY/yCU
60 55 58 59 syl2an XAYByBCUDVY/yCU
61 60 ex XAYByBCUDVY/yCU
62 61 ralimdv XAYBxAyBCUDVxAY/yCU
63 62 impcom xAyBCUDVXAYBxAY/yCU
64 rspcsbela XAxAY/yCUX/xY/yCU
65 54 63 64 syl2anc xAyBCUDVXAYBX/xY/yCU
66 simpr CUDVDV
67 66 ralimi yBCUDVyBDV
68 rspcsbela YByBDVY/yDV
69 55 67 68 syl2an XAYByBCUDVY/yDV
70 69 ex XAYByBCUDVY/yDV
71 70 ralimdv XAYBxAyBCUDVxAY/yDV
72 71 impcom xAyBCUDVXAYBxAY/yDV
73 rspcsbela XAxAY/yDVX/xY/yDV
74 54 72 73 syl2anc xAyBCUDVXAYBX/xY/yDV
75 mpoexga X/xY/yCUX/xY/yDVsX/xY/yC,tX/xY/yDX/xY/yEV
76 65 74 75 syl2anc xAyBCUDVXAYBsX/xY/yC,tX/xY/yDX/xY/yEV
77 32 52 54 56 76 ovmpod xAyBCUDVXAYBXOY=sX/xY/yC,tX/xY/yDX/xY/yE
78 77 oveqd xAyBCUDVXAYBSXOYT=SsX/xY/yC,tX/xY/yDX/xY/yET
79 78 eleq2d xAyBCUDVXAYBWSXOYTWSsX/xY/yC,tX/xY/yDX/xY/yET
80 eqid sX/xY/yC,tX/xY/yDX/xY/yE=sX/xY/yC,tX/xY/yDX/xY/yE
81 80 elmpocl WSsX/xY/yC,tX/xY/yDX/xY/yETSX/xY/yCTX/xY/yD
82 79 81 syl6bi xAyBCUDVXAYBWSXOYTSX/xY/yCTX/xY/yD
83 82 impancom xAyBCUDVWSXOYTXAYBSX/xY/yCTX/xY/yD
84 83 impcom XAYBxAyBCUDVWSXOYTSX/xY/yCTX/xY/yD
85 2 84 jca XAYBxAyBCUDVWSXOYTXAYBSX/xY/yCTX/xY/yD
86 85 ex XAYBxAyBCUDVWSXOYTXAYBSX/xY/yCTX/xY/yD
87 1 mpondm0 ¬XAYBXOY=
88 87 oveqd ¬XAYBSXOYT=ST
89 88 eleq2d ¬XAYBWSXOYTWST
90 noel ¬W
91 90 pm2.21i WXAYBSX/xY/yCTX/xY/yD
92 0ov ST=
93 91 92 eleq2s WSTXAYBSX/xY/yCTX/xY/yD
94 89 93 syl6bi ¬XAYBWSXOYTXAYBSX/xY/yCTX/xY/yD
95 94 adantld ¬XAYBxAyBCUDVWSXOYTXAYBSX/xY/yCTX/xY/yD
96 86 95 pm2.61i xAyBCUDVWSXOYTXAYBSX/xY/yCTX/xY/yD
97 96 ex xAyBCUDVWSXOYTXAYBSX/xY/yCTX/xY/yD