Metamath Proof Explorer


Theorem elabrex

Description: Elementhood in an image set. (Contributed by Mario Carneiro, 14-Jan-2014)

Ref Expression
Hypothesis elabrex.1 BV
Assertion elabrex xABy|xAy=B

Proof

Step Hyp Ref Expression
1 elabrex.1 BV
2 tru
3 csbeq1a x=zB=z/xB
4 3 equcoms z=xB=z/xB
5 trud z=x
6 4 5 2thd z=xB=z/xB
7 6 rspcev xAzAB=z/xB
8 2 7 mpan2 xAzAB=z/xB
9 eqeq1 y=By=z/xBB=z/xB
10 9 rexbidv y=BzAy=z/xBzAB=z/xB
11 1 10 elab By|zAy=z/xBzAB=z/xB
12 8 11 sylibr xABy|zAy=z/xB
13 nfv zy=B
14 nfcsb1v _xz/xB
15 14 nfeq2 xy=z/xB
16 3 eqeq2d x=zy=By=z/xB
17 13 15 16 cbvrexw xAy=BzAy=z/xB
18 17 abbii y|xAy=B=y|zAy=z/xB
19 12 18 eleqtrrdi xABy|xAy=B