Metamath Proof Explorer


Theorem eldisjsdisj

Description: The element of the class of disjoint relations and the disjoint relation predicate are the same, that is ( R e. Disjs <-> Disj R ) when R is a set. (Contributed by Peter Mazsa, 25-Jul-2021)

Ref Expression
Assertion eldisjsdisj RVRDisjsDisjR

Proof

Step Hyp Ref Expression
1 cosscnvex RVR-1V
2 elcnvrefrelsrel R-1VR-1CnvRefRelsCnvRefRelR-1
3 1 2 syl RVR-1CnvRefRelsCnvRefRelR-1
4 elrelsrel RVRRelsRelR
5 3 4 anbi12d RVR-1CnvRefRelsRRelsCnvRefRelR-1RelR
6 eldisjs RDisjsR-1CnvRefRelsRRels
7 df-disjALTV DisjRCnvRefRelR-1RelR
8 5 6 7 3bitr4g RVRDisjsDisjR