Description: The domain of definition of the internal direct product, which states that S is a family of subgroups that mutually commute and have trivial intersections. (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 14-Jul-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eldprdi.0 | |
|
eldprdi.w | |
||
eldprdi.1 | |
||
eldprdi.2 | |
||
eldprdi.3 | |
||
Assertion | eldprdi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldprdi.0 | |
|
2 | eldprdi.w | |
|
3 | eldprdi.1 | |
|
4 | eldprdi.2 | |
|
5 | eldprdi.3 | |
|
6 | eqid | |
|
7 | oveq2 | |
|
8 | 7 | rspceeqv | |
9 | 5 6 8 | sylancl | |
10 | 1 2 | eldprd | |
11 | 4 10 | syl | |
12 | 3 9 11 | mpbir2and | |