Metamath Proof Explorer


Theorem elee

Description: Membership in a Euclidean space. We define Euclidean space here using Cartesian coordinates over N space. We later abstract away from this using Tarski's geometry axioms, so this exact definition is unimportant. (Contributed by Scott Fenton, 3-Jun-2013)

Ref Expression
Assertion elee NA𝔼NA:1N

Proof

Step Hyp Ref Expression
1 oveq2 n=N1n=1N
2 1 oveq2d n=N1n=1N
3 df-ee 𝔼=n1n
4 ovex 1NV
5 2 3 4 fvmpt N𝔼N=1N
6 5 eleq2d NA𝔼NA1N
7 reex V
8 ovex 1NV
9 7 8 elmap A1NA:1N
10 6 9 bitrdi NA𝔼NA:1N