Metamath Proof Explorer


Theorem elefmndbas2

Description: Two ways of saying a function is a mapping of A to itself. (Contributed by AV, 27-Jan-2024) (Proof shortened by AV, 29-Mar-2024)

Ref Expression
Hypotheses efmndbas.g No typesetting found for |- G = ( EndoFMnd ` A ) with typecode |-
efmndbas.b B=BaseG
Assertion elefmndbas2 FVFBF:AA

Proof

Step Hyp Ref Expression
1 efmndbas.g Could not format G = ( EndoFMnd ` A ) : No typesetting found for |- G = ( EndoFMnd ` A ) with typecode |-
2 efmndbas.b B=BaseG
3 1 2 efmndbasabf B=f|f:AA
4 3 a1i FVB=f|f:AA
5 4 eleq2d FVFBFf|f:AA
6 feq1 f=Ff:AAF:AA
7 eqid f|f:AA=f|f:AA
8 6 7 elab2g FVFf|f:AAF:AA
9 5 8 bitrd FVFBF:AA