Metamath Proof Explorer


Theorem eleqvrels2

Description: Element of the class of equivalence relations. (Contributed by Peter Mazsa, 24-Aug-2021)

Ref Expression
Assertion eleqvrels2 REqvRelsIdomRRR-1RRRRRRels

Proof

Step Hyp Ref Expression
1 dfeqvrels2 EqvRels=rRels|Idomrrr-1rrrr
2 dmeq r=Rdomr=domR
3 2 reseq2d r=RIdomr=IdomR
4 id r=Rr=R
5 3 4 sseq12d r=RIdomrrIdomRR
6 cnveq r=Rr-1=R-1
7 6 4 sseq12d r=Rr-1rR-1R
8 coideq r=Rrr=RR
9 8 4 sseq12d r=RrrrRRR
10 5 7 9 3anbi123d r=RIdomrrr-1rrrrIdomRRR-1RRRR
11 1 10 rabeqel REqvRelsIdomRRR-1RRRRRRels