Metamath Proof Explorer


Theorem elfix2

Description: Alternative membership in the fixpoint of a class. (Contributed by Scott Fenton, 11-Apr-2012)

Ref Expression
Hypothesis elfix2.1 RelR
Assertion elfix2 A𝖥𝗂𝗑RARA

Proof

Step Hyp Ref Expression
1 elfix2.1 RelR
2 elex A𝖥𝗂𝗑RAV
3 1 brrelex1i ARAAV
4 eleq1 x=Ax𝖥𝗂𝗑RA𝖥𝗂𝗑R
5 breq12 x=Ax=AxRxARA
6 5 anidms x=AxRxARA
7 vex xV
8 7 elfix x𝖥𝗂𝗑RxRx
9 4 6 8 vtoclbg AVA𝖥𝗂𝗑RARA
10 2 3 9 pm5.21nii A𝖥𝗂𝗑RARA