Metamath Proof Explorer


Theorem elfvmptrab

Description: Implications for the value of a function defined by the maps-to notation with a class abstraction as a result having an element. (Contributed by Alexander van der Vekens, 15-Jul-2018)

Ref Expression
Hypotheses elfvmptrab.f F=xVyM|φ
elfvmptrab.v XVMV
Assertion elfvmptrab YFXXVYM

Proof

Step Hyp Ref Expression
1 elfvmptrab.f F=xVyM|φ
2 elfvmptrab.v XVMV
3 csbconstg xVx/mM=M
4 3 eqcomd xVM=x/mM
5 rabeq M=x/mMyM|φ=yx/mM|φ
6 4 5 syl xVyM|φ=yx/mM|φ
7 6 mpteq2ia xVyM|φ=xVyx/mM|φ
8 1 7 eqtri F=xVyx/mM|φ
9 csbconstg XVX/mM=M
10 9 2 eqeltrd XVX/mMV
11 8 10 elfvmptrab1w YFXXVYX/mM
12 9 eleq2d XVYX/mMYM
13 12 biimpd XVYX/mMYM
14 13 imdistani XVYX/mMXVYM
15 11 14 syl YFXXVYM