Metamath Proof Explorer


Theorem elfvmptrab1w

Description: Implications for the value of a function defined by the maps-to notation with a class abstraction as a result having an element. Here, the base set of the class abstraction depends on the argument of the function. Version of elfvmptrab1 with a disjoint variable condition, which does not require ax-13 . (Contributed by Alexander van der Vekens, 15-Jul-2018) (Revised by Gino Giotto, 26-Jan-2024)

Ref Expression
Hypotheses elfvmptrab1w.f F = x V y x / m M | φ
elfvmptrab1w.v X V X / m M V
Assertion elfvmptrab1w Y F X X V Y X / m M

Proof

Step Hyp Ref Expression
1 elfvmptrab1w.f F = x V y x / m M | φ
2 elfvmptrab1w.v X V X / m M V
3 elfvdm Y F X X dom F
4 1 dmmptss dom F V
5 4 sseli X dom F X V
6 rabexg X / m M V y X / m M | [˙X / x]˙ φ V
7 5 2 6 3syl X dom F y X / m M | [˙X / x]˙ φ V
8 nfcv _ x X
9 nfsbc1v x [˙X / x]˙ φ
10 nfcv _ x M
11 8 10 nfcsbw _ x X / m M
12 9 11 nfrabw _ x y X / m M | [˙X / x]˙ φ
13 csbeq1 x = X x / m M = X / m M
14 sbceq1a x = X φ [˙X / x]˙ φ
15 13 14 rabeqbidv x = X y x / m M | φ = y X / m M | [˙X / x]˙ φ
16 8 12 15 1 fvmptf X V y X / m M | [˙X / x]˙ φ V F X = y X / m M | [˙X / x]˙ φ
17 5 7 16 syl2anc X dom F F X = y X / m M | [˙X / x]˙ φ
18 17 eleq2d X dom F Y F X Y y X / m M | [˙X / x]˙ φ
19 elrabi Y y X / m M | [˙X / x]˙ φ Y X / m M
20 5 19 anim12i X dom F Y y X / m M | [˙X / x]˙ φ X V Y X / m M
21 20 ex X dom F Y y X / m M | [˙X / x]˙ φ X V Y X / m M
22 18 21 sylbid X dom F Y F X X V Y X / m M
23 3 22 mpcom Y F X X V Y X / m M