Metamath Proof Explorer


Theorem elgrplsmsn

Description: Membership in a sumset with a singleton for a group operation. (Contributed by Thierry Arnoux, 21-Jan-2024)

Ref Expression
Hypotheses elgrplsmsn.1 B=BaseG
elgrplsmsn.2 +˙=+G
elgrplsmsn.3 ˙=LSSumG
elgrplsmsn.4 φGV
elgrplsmsn.5 φAB
elgrplsmsn.6 φXB
Assertion elgrplsmsn φZA˙XxAZ=x+˙X

Proof

Step Hyp Ref Expression
1 elgrplsmsn.1 B=BaseG
2 elgrplsmsn.2 +˙=+G
3 elgrplsmsn.3 ˙=LSSumG
4 elgrplsmsn.4 φGV
5 elgrplsmsn.5 φAB
6 elgrplsmsn.6 φXB
7 6 snssd φXB
8 1 2 3 lsmelvalx GVABXBZA˙XxAyXZ=x+˙y
9 4 5 7 8 syl3anc φZA˙XxAyXZ=x+˙y
10 oveq2 y=Xx+˙y=x+˙X
11 10 eqeq2d y=XZ=x+˙yZ=x+˙X
12 11 rexsng XByXZ=x+˙yZ=x+˙X
13 6 12 syl φyXZ=x+˙yZ=x+˙X
14 13 rexbidv φxAyXZ=x+˙yxAZ=x+˙X
15 9 14 bitrd φZA˙XxAZ=x+˙X