Metamath Proof Explorer


Theorem elim2if

Description: Elimination of two conditional operators contained in a wff ch . (Contributed by Thierry Arnoux, 25-Jan-2017)

Ref Expression
Hypotheses elim2if.1 ifφAifψBC=Aχθ
elim2if.2 ifφAifψBC=Bχτ
elim2if.3 ifφAifψBC=Cχη
Assertion elim2if χφθ¬φψτ¬ψη

Proof

Step Hyp Ref Expression
1 elim2if.1 ifφAifψBC=Aχθ
2 elim2if.2 ifφAifψBC=Bχτ
3 elim2if.3 ifφAifψBC=Cχη
4 iftrue φifφAifψBC=A
5 4 1 syl φχθ
6 iffalse ¬φifφAifψBC=ifψBC
7 6 eqeq1d ¬φifφAifψBC=BifψBC=B
8 7 2 syl6bir ¬φifψBC=Bχτ
9 6 eqeq1d ¬φifφAifψBC=CifψBC=C
10 9 3 syl6bir ¬φifψBC=Cχη
11 8 10 elimifd ¬φχψτ¬ψη
12 5 11 cases χφθ¬φψτ¬ψη