Metamath Proof Explorer


Theorem ello1mpt2

Description: Elementhood in the set of eventually upper bounded functions. (Contributed by Mario Carneiro, 26-May-2016)

Ref Expression
Hypotheses ello1mpt.1 φA
ello1mpt.2 φxAB
ello1d.3 φC
Assertion ello1mpt2 φxAB𝑂1yC+∞mxAyxBm

Proof

Step Hyp Ref Expression
1 ello1mpt.1 φA
2 ello1mpt.2 φxAB
3 ello1d.3 φC
4 1 2 ello1mpt φxAB𝑂1ymxAyxBm
5 rexico ACyC+∞xAyxBmyxAyxBm
6 1 3 5 syl2anc φyC+∞xAyxBmyxAyxBm
7 6 rexbidv φmyC+∞xAyxBmmyxAyxBm
8 rexcom yC+∞mxAyxBmmyC+∞xAyxBm
9 rexcom ymxAyxBmmyxAyxBm
10 7 8 9 3bitr4g φyC+∞mxAyxBmymxAyxBm
11 4 10 bitr4d φxAB𝑂1yC+∞mxAyxBm