Metamath Proof Explorer


Theorem elnelneqd

Description: Two classes are not equal if there is an element of one which is not an element of the other. (Contributed by Rohan Ridenour, 11-Aug-2023)

Ref Expression
Hypotheses elnelneqd.1 φCA
elnelneqd.2 φ¬CB
Assertion elnelneqd φ¬A=B

Proof

Step Hyp Ref Expression
1 elnelneqd.1 φCA
2 elnelneqd.2 φ¬CB
3 1 adantr φA=BCA
4 simpr φA=BA=B
5 3 4 eleqtrd φA=BCB
6 2 5 mtand φ¬A=B