Metamath Proof Explorer


Theorem elons2d

Description: The cut of any set of surreals and the empty set is a surreal ordinal. (Contributed by Scott Fenton, 19-Mar-2025)

Ref Expression
Hypotheses elons2d.1 φAV
elons2d.2 φANo
elons2d.3 φX=A|s
Assertion elons2d Could not format assertion : No typesetting found for |- ( ph -> X e. On_s ) with typecode |-

Proof

Step Hyp Ref Expression
1 elons2d.1 φAV
2 elons2d.2 φANo
3 elons2d.3 φX=A|s
4 1 2 elpwd φA𝒫No
5 oveq1 a=Aa|s=A|s
6 5 eqeq2d a=AX=a|sX=A|s
7 6 rspcev A𝒫NoX=A|sa𝒫NoX=a|s
8 4 3 7 syl2anc φa𝒫NoX=a|s
9 elons2 Could not format ( X e. On_s <-> E. a e. ~P No X = ( a |s (/) ) ) : No typesetting found for |- ( X e. On_s <-> E. a e. ~P No X = ( a |s (/) ) ) with typecode |-
10 8 9 sylibr Could not format ( ph -> X e. On_s ) : No typesetting found for |- ( ph -> X e. On_s ) with typecode |-