Metamath Proof Explorer


Theorem elopab

Description: Membership in a class abstraction of ordered pairs. (Contributed by NM, 24-Mar-1998)

Ref Expression
Assertion elopab Axy|φxyA=xyφ

Proof

Step Hyp Ref Expression
1 elex Axy|φAV
2 opex xyV
3 eleq1 A=xyAVxyV
4 2 3 mpbiri A=xyAV
5 4 adantr A=xyφAV
6 5 exlimivv xyA=xyφAV
7 elopabw AVAxy|φxyA=xyφ
8 1 6 7 pm5.21nii Axy|φxyA=xyφ