Description: Restricted existential quantification over an ordered-pair class abstraction. (Contributed by AV, 8-Nov-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rexopabb.o | |
|
rexopabb.p | |
||
Assertion | rexopabb | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexopabb.o | |
|
2 | rexopabb.p | |
|
3 | 1 | rexeqi | |
4 | elopab | |
|
5 | simprr | |
|
6 | 2 | biimpd | |
7 | 6 | adantr | |
8 | 7 | impcom | |
9 | 5 8 | jca | |
10 | 9 | ex | |
11 | 10 | 2eximdv | |
12 | 11 | impcom | |
13 | 4 12 | sylanb | |
14 | 13 | rexlimiva | |
15 | nfopab1 | |
|
16 | nfv | |
|
17 | 15 16 | nfrexw | |
18 | nfopab2 | |
|
19 | nfv | |
|
20 | 18 19 | nfrexw | |
21 | opabidw | |
|
22 | opex | |
|
23 | 22 2 | sbcie | |
24 | rspesbca | |
|
25 | 21 23 24 | syl2anbr | |
26 | 20 25 | exlimi | |
27 | 17 26 | exlimi | |
28 | 14 27 | impbii | |
29 | 3 28 | bitri | |