Metamath Proof Explorer


Theorem rexopabb

Description: Restricted existential quantification over an ordered-pair class abstraction. (Contributed by AV, 8-Nov-2023)

Ref Expression
Hypotheses rexopabb.o O=xy|φ
rexopabb.p o=xyψχ
Assertion rexopabb oOψxyφχ

Proof

Step Hyp Ref Expression
1 rexopabb.o O=xy|φ
2 rexopabb.p o=xyψχ
3 1 rexeqi oOψoxy|φψ
4 elopab oxy|φxyo=xyφ
5 simprr ψo=xyφφ
6 2 biimpd o=xyψχ
7 6 adantr o=xyφψχ
8 7 impcom ψo=xyφχ
9 5 8 jca ψo=xyφφχ
10 9 ex ψo=xyφφχ
11 10 2eximdv ψxyo=xyφxyφχ
12 11 impcom xyo=xyφψxyφχ
13 4 12 sylanb oxy|φψxyφχ
14 13 rexlimiva oxy|φψxyφχ
15 nfopab1 _xxy|φ
16 nfv xψ
17 15 16 nfrexw xoxy|φψ
18 nfopab2 _yxy|φ
19 nfv yψ
20 18 19 nfrexw yoxy|φψ
21 opabidw xyxy|φφ
22 opex xyV
23 22 2 sbcie [˙xy/o]˙ψχ
24 rspesbca xyxy|φ[˙xy/o]˙ψoxy|φψ
25 21 23 24 syl2anbr φχoxy|φψ
26 20 25 exlimi yφχoxy|φψ
27 17 26 exlimi xyφχoxy|φψ
28 14 27 impbii oxy|φψxyφχ
29 3 28 bitri oOψxyφχ