Metamath Proof Explorer


Theorem eloprabi

Description: A consequence of membership in an operation class abstraction, using ordered pair extractors. (Contributed by NM, 6-Nov-2006) (Revised by David Abernethy, 19-Jun-2012)

Ref Expression
Hypotheses eloprabi.1 x=1st1stAφψ
eloprabi.2 y=2nd1stAψχ
eloprabi.3 z=2ndAχθ
Assertion eloprabi Axyz|φθ

Proof

Step Hyp Ref Expression
1 eloprabi.1 x=1st1stAφψ
2 eloprabi.2 y=2nd1stAψχ
3 eloprabi.3 z=2ndAχθ
4 eqeq1 w=Aw=xyzA=xyz
5 4 anbi1d w=Aw=xyzφA=xyzφ
6 5 3exbidv w=Axyzw=xyzφxyzA=xyzφ
7 df-oprab xyz|φ=w|xyzw=xyzφ
8 6 7 elab2g Axyz|φAxyz|φxyzA=xyzφ
9 8 ibi Axyz|φxyzA=xyzφ
10 opex xyV
11 vex zV
12 10 11 op1std A=xyz1stA=xy
13 12 fveq2d A=xyz1st1stA=1stxy
14 vex xV
15 vex yV
16 14 15 op1st 1stxy=x
17 13 16 eqtr2di A=xyzx=1st1stA
18 17 1 syl A=xyzφψ
19 12 fveq2d A=xyz2nd1stA=2ndxy
20 14 15 op2nd 2ndxy=y
21 19 20 eqtr2di A=xyzy=2nd1stA
22 21 2 syl A=xyzψχ
23 10 11 op2ndd A=xyz2ndA=z
24 23 eqcomd A=xyzz=2ndA
25 24 3 syl A=xyzχθ
26 18 22 25 3bitrd A=xyzφθ
27 26 biimpa A=xyzφθ
28 27 exlimiv zA=xyzφθ
29 28 exlimiv yzA=xyzφθ
30 29 exlimiv xyzA=xyzφθ
31 9 30 syl Axyz|φθ