Description: A consequence of membership in an operation class abstraction, using ordered pair extractors. (Contributed by NM, 6-Nov-2006) (Revised by David Abernethy, 19-Jun-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eloprabi.1 | |
|
eloprabi.2 | |
||
eloprabi.3 | |
||
Assertion | eloprabi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloprabi.1 | |
|
2 | eloprabi.2 | |
|
3 | eloprabi.3 | |
|
4 | eqeq1 | |
|
5 | 4 | anbi1d | |
6 | 5 | 3exbidv | |
7 | df-oprab | |
|
8 | 6 7 | elab2g | |
9 | 8 | ibi | |
10 | opex | |
|
11 | vex | |
|
12 | 10 11 | op1std | |
13 | 12 | fveq2d | |
14 | vex | |
|
15 | vex | |
|
16 | 14 15 | op1st | |
17 | 13 16 | eqtr2di | |
18 | 17 1 | syl | |
19 | 12 | fveq2d | |
20 | 14 15 | op2nd | |
21 | 19 20 | eqtr2di | |
22 | 21 2 | syl | |
23 | 10 11 | op2ndd | |
24 | 23 | eqcomd | |
25 | 24 3 | syl | |
26 | 18 22 25 | 3bitrd | |
27 | 26 | biimpa | |
28 | 27 | exlimiv | |
29 | 28 | exlimiv | |
30 | 29 | exlimiv | |
31 | 9 30 | syl | |