Metamath Proof Explorer


Theorem elpm2r

Description: Sufficient condition for being a partial function. (Contributed by NM, 31-Dec-2013)

Ref Expression
Assertion elpm2r AVBWF:CACBFA𝑝𝑚B

Proof

Step Hyp Ref Expression
1 fdm F:CAdomF=C
2 1 feq2d F:CAF:domFAF:CA
3 1 sseq1d F:CAdomFBCB
4 2 3 anbi12d F:CAF:domFAdomFBF:CACB
5 4 adantr F:CACBF:domFAdomFBF:CACB
6 5 ibir F:CACBF:domFAdomFB
7 elpm2g AVBWFA𝑝𝑚BF:domFAdomFB
8 6 7 imbitrrid AVBWF:CACBFA𝑝𝑚B
9 8 imp AVBWF:CACBFA𝑝𝑚B