Description: If one element of an unordered pair is not a set, the size of the unordered pair is not 2. (Contributed by Alexander van der Vekens, 7-Oct-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | elprchashprn2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prprc1 | |
|
2 | hashsng | |
|
3 | fveq2 | |
|
4 | 3 | eqcomd | |
5 | 4 | eqeq1d | |
6 | 5 | biimpa | |
7 | id | |
|
8 | 1ne2 | |
|
9 | 8 | a1i | |
10 | 7 9 | eqnetrd | |
11 | 10 | neneqd | |
12 | 6 11 | syl | |
13 | 12 | expcom | |
14 | 2 13 | syl | |
15 | snprc | |
|
16 | eqeq2 | |
|
17 | 16 | biimpa | |
18 | hash0 | |
|
19 | fveq2 | |
|
20 | 19 | eqcomd | |
21 | 20 | eqeq1d | |
22 | 21 | biimpa | |
23 | id | |
|
24 | 0ne2 | |
|
25 | 24 | a1i | |
26 | 23 25 | eqnetrd | |
27 | 26 | neneqd | |
28 | 22 27 | syl | |
29 | 17 18 28 | sylancl | |
30 | 29 | ex | |
31 | 15 30 | sylbi | |
32 | 14 31 | pm2.61i | |
33 | 1 32 | syl | |