Metamath Proof Explorer


Theorem elprchashprn2

Description: If one element of an unordered pair is not a set, the size of the unordered pair is not 2. (Contributed by Alexander van der Vekens, 7-Oct-2017)

Ref Expression
Assertion elprchashprn2 ¬MV¬MN=2

Proof

Step Hyp Ref Expression
1 prprc1 ¬MVMN=N
2 hashsng NVN=1
3 fveq2 MN=NMN=N
4 3 eqcomd MN=NN=MN
5 4 eqeq1d MN=NN=1MN=1
6 5 biimpa MN=NN=1MN=1
7 id MN=1MN=1
8 1ne2 12
9 8 a1i MN=112
10 7 9 eqnetrd MN=1MN2
11 10 neneqd MN=1¬MN=2
12 6 11 syl MN=NN=1¬MN=2
13 12 expcom N=1MN=N¬MN=2
14 2 13 syl NVMN=N¬MN=2
15 snprc ¬NVN=
16 eqeq2 N=MN=NMN=
17 16 biimpa N=MN=NMN=
18 hash0 =0
19 fveq2 MN=MN=
20 19 eqcomd MN==MN
21 20 eqeq1d MN==0MN=0
22 21 biimpa MN==0MN=0
23 id MN=0MN=0
24 0ne2 02
25 24 a1i MN=002
26 23 25 eqnetrd MN=0MN2
27 26 neneqd MN=0¬MN=2
28 22 27 syl MN==0¬MN=2
29 17 18 28 sylancl N=MN=N¬MN=2
30 29 ex N=MN=N¬MN=2
31 15 30 sylbi ¬NVMN=N¬MN=2
32 14 31 pm2.61i MN=N¬MN=2
33 1 32 syl ¬MV¬MN=2