Metamath Proof Explorer


Theorem elprn2

Description: A member of an unordered pair that is not the "second", must be the "first". (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion elprn2 ABCACA=B

Proof

Step Hyp Ref Expression
1 neneq AC¬A=C
2 1 adantl ABCAC¬A=C
3 elpri ABCA=BA=C
4 3 adantr ABCACA=BA=C
5 orcom A=BA=CA=CA=B
6 df-or A=CA=B¬A=CA=B
7 5 6 bitri A=BA=C¬A=CA=B
8 4 7 sylib ABCAC¬A=CA=B
9 2 8 mpd ABCACA=B