Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Reflexivity
elrefrels2
Next ⟩
elrefrels3
Metamath Proof Explorer
Ascii
Unicode
Theorem
elrefrels2
Description:
Element of the class of reflexive relations.
(Contributed by
Peter Mazsa
, 23-Jul-2019)
Ref
Expression
Assertion
elrefrels2
⊢
R
∈
RefRels
↔
I
∩
dom
⁡
R
×
ran
⁡
R
⊆
R
∧
R
∈
Rels
Proof
Step
Hyp
Ref
Expression
1
dfrefrels2
⊢
RefRels
=
r
∈
Rels
|
I
∩
dom
⁡
r
×
ran
⁡
r
⊆
r
2
dmeq
⊢
r
=
R
→
dom
⁡
r
=
dom
⁡
R
3
rneq
⊢
r
=
R
→
ran
⁡
r
=
ran
⁡
R
4
2
3
xpeq12d
⊢
r
=
R
→
dom
⁡
r
×
ran
⁡
r
=
dom
⁡
R
×
ran
⁡
R
5
4
ineq2d
⊢
r
=
R
→
I
∩
dom
⁡
r
×
ran
⁡
r
=
I
∩
dom
⁡
R
×
ran
⁡
R
6
id
⊢
r
=
R
→
r
=
R
7
5
6
sseq12d
⊢
r
=
R
→
I
∩
dom
⁡
r
×
ran
⁡
r
⊆
r
↔
I
∩
dom
⁡
R
×
ran
⁡
R
⊆
R
8
1
7
rabeqel
⊢
R
∈
RefRels
↔
I
∩
dom
⁡
R
×
ran
⁡
R
⊆
R
∧
R
∈
Rels