Metamath Proof Explorer


Theorem eltskm

Description: Belonging to ( tarskiMapA ) . (Contributed by FL, 17-Apr-2011) (Proof shortened by Mario Carneiro, 21-Sep-2014)

Ref Expression
Assertion eltskm A V B tarskiMap A x Tarski A x B x

Proof

Step Hyp Ref Expression
1 tskmval A V tarskiMap A = x Tarski | A x
2 1 eleq2d A V B tarskiMap A B x Tarski | A x
3 elex B x Tarski | A x B V
4 3 a1i A V B x Tarski | A x B V
5 tskmid A V A tarskiMap A
6 tskmcl tarskiMap A Tarski
7 eleq2 x = tarskiMap A A x A tarskiMap A
8 eleq2 x = tarskiMap A B x B tarskiMap A
9 7 8 imbi12d x = tarskiMap A A x B x A tarskiMap A B tarskiMap A
10 9 rspcv tarskiMap A Tarski x Tarski A x B x A tarskiMap A B tarskiMap A
11 6 10 ax-mp x Tarski A x B x A tarskiMap A B tarskiMap A
12 5 11 syl5com A V x Tarski A x B x B tarskiMap A
13 elex B tarskiMap A B V
14 12 13 syl6 A V x Tarski A x B x B V
15 elintrabg B V B x Tarski | A x x Tarski A x B x
16 15 a1i A V B V B x Tarski | A x x Tarski A x B x
17 4 14 16 pm5.21ndd A V B x Tarski | A x x Tarski A x B x
18 2 17 bitrd A V B tarskiMap A x Tarski A x B x