Metamath Proof Explorer


Theorem eluni

Description: Membership in class union. (Contributed by NM, 22-May-1994)

Ref Expression
Assertion eluni ABxAxxB

Proof

Step Hyp Ref Expression
1 elex ABAV
2 elex AxAV
3 2 adantr AxxBAV
4 3 exlimiv xAxxBAV
5 eleq1 y=AyxAx
6 5 anbi1d y=AyxxBAxxB
7 6 exbidv y=AxyxxBxAxxB
8 df-uni B=y|xyxxB
9 7 8 elab2g AVABxAxxB
10 1 4 9 pm5.21nii ABxAxxB