Metamath Proof Explorer


Theorem eluzadd

Description: Membership in a later upper set of integers. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by SN, 7-Feb-2025)

Ref Expression
Assertion eluzadd NMKN+KM+K

Proof

Step Hyp Ref Expression
1 eluzel2 NMM
2 zaddcl MKM+K
3 1 2 sylan NMKM+K
4 eluzelz NMN
5 zaddcl NKN+K
6 4 5 sylan NMKN+K
7 1 zred NMM
8 7 adantr NMKM
9 eluzelre NMN
10 9 adantr NMKN
11 zre KK
12 11 adantl NMKK
13 eluzle NMMN
14 13 adantr NMKMN
15 8 10 12 14 leadd1dd NMKM+KN+K
16 eluz2 N+KM+KM+KN+KM+KN+K
17 3 6 15 16 syl3anbrc NMKN+KM+K