Metamath Proof Explorer


Theorem elxp

Description: Membership in a Cartesian product. (Contributed by NM, 4-Jul-1994)

Ref Expression
Assertion elxp AB×CxyA=xyxByC

Proof

Step Hyp Ref Expression
1 df-xp B×C=xy|xByC
2 1 eleq2i AB×CAxy|xByC
3 elopab Axy|xByCxyA=xyxByC
4 2 3 bitri AB×CxyA=xyxByC