Metamath Proof Explorer


Theorem elxpi

Description: Membership in a Cartesian product. Uses fewer axioms than elxp . (Contributed by NM, 4-Jul-1994)

Ref Expression
Assertion elxpi AB×CxyA=xyxByC

Proof

Step Hyp Ref Expression
1 eqeq1 z=Az=xyA=xy
2 1 anbi1d z=Az=xyxByCA=xyxByC
3 2 2exbidv z=Axyz=xyxByCxyA=xyxByC
4 df-xp B×C=xy|xByC
5 df-opab xy|xByC=z|xyz=xyxByC
6 4 5 eqtri B×C=z|xyz=xyxByC
7 3 6 elab2g AB×CAB×CxyA=xyxByC
8 7 ibi AB×CxyA=xyxByC