Metamath Proof Explorer


Theorem elz

Description: Membership in the set of integers. (Contributed by NM, 8-Jan-2002)

Ref Expression
Assertion elz NNN=0NN

Proof

Step Hyp Ref Expression
1 eqeq1 x=Nx=0N=0
2 eleq1 x=NxN
3 negeq x=Nx=N
4 3 eleq1d x=NxN
5 1 2 4 3orbi123d x=Nx=0xxN=0NN
6 df-z =x|x=0xx
7 5 6 elrab2 NNN=0NN