Metamath Proof Explorer


Theorem elzdif0

Description: Lemma for qqhval2 . (Contributed by Thierry Arnoux, 29-Oct-2017)

Ref Expression
Assertion elzdif0 M0MM

Proof

Step Hyp Ref Expression
1 eldifsnneq M0¬M=0
2 eldifi M0M
3 elz MMM=0MM
4 2 3 sylib M0MM=0MM
5 4 simprd M0M=0MM
6 3orass M=0MMM=0MM
7 5 6 sylib M0M=0MM
8 orel1 ¬M=0M=0MMMM
9 1 7 8 sylc M0MM