Metamath Proof Explorer


Theorem elzdif0

Description: Lemma for qqhval2 . (Contributed by Thierry Arnoux, 29-Oct-2017)

Ref Expression
Assertion elzdif0 M 0 M M

Proof

Step Hyp Ref Expression
1 eldifsnneq M 0 ¬ M = 0
2 eldifi M 0 M
3 elz M M M = 0 M M
4 2 3 sylib M 0 M M = 0 M M
5 4 simprd M 0 M = 0 M M
6 3orass M = 0 M M M = 0 M M
7 5 6 sylib M 0 M = 0 M M
8 orel1 ¬ M = 0 M = 0 M M M M
9 1 7 8 sylc M 0 M M