Metamath Proof Explorer


Theorem en0OLD

Description: Obsolete version of en0 as of 23-Sep-2024. (Contributed by NM, 27-May-1998) Avoid ax-pow . (Revised by BTernaryTau, 31-Jul-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion en0OLD AA=

Proof

Step Hyp Ref Expression
1 bren Aff:A1-1 onto
2 f1ocnv f:A1-1 ontof-1:1-1 ontoA
3 f1o00 f-1:1-1 ontoAf-1=A=
4 3 simprbi f-1:1-1 ontoAA=
5 2 4 syl f:A1-1 ontoA=
6 5 exlimiv ff:A1-1 ontoA=
7 1 6 sylbi AA=
8 0ex V
9 f1oeq1 f=f:1-1 onto:1-1 onto
10 f1o0 :1-1 onto
11 8 9 10 ceqsexv2d ff:1-1 onto
12 bren ff:1-1 onto
13 11 12 mpbir
14 breq1 A=A
15 13 14 mpbiri A=A
16 7 15 impbii AA=