Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Equinumerosity
en0r
Next ⟩
ensn1
Metamath Proof Explorer
Ascii
Unicode
Theorem
en0r
Description:
The empty set is equinumerous only to itself.
(Contributed by
BTernaryTau
, 29-Nov-2024)
Ref
Expression
Assertion
en0r
⊢
∅
≈
A
↔
A
=
∅
Proof
Step
Hyp
Ref
Expression
1
encv
⊢
∅
≈
A
→
∅
∈
V
∧
A
∈
V
2
breng
⊢
∅
∈
V
∧
A
∈
V
→
∅
≈
A
↔
∃
f
f
:
∅
⟶
1-1 onto
A
3
1
2
syl
⊢
∅
≈
A
→
∅
≈
A
↔
∃
f
f
:
∅
⟶
1-1 onto
A
4
3
ibi
⊢
∅
≈
A
→
∃
f
f
:
∅
⟶
1-1 onto
A
5
f1o00
⊢
f
:
∅
⟶
1-1 onto
A
↔
f
=
∅
∧
A
=
∅
6
5
simprbi
⊢
f
:
∅
⟶
1-1 onto
A
→
A
=
∅
7
6
exlimiv
⊢
∃
f
f
:
∅
⟶
1-1 onto
A
→
A
=
∅
8
4
7
syl
⊢
∅
≈
A
→
A
=
∅
9
0ex
⊢
∅
∈
V
10
f1oeq1
⊢
f
=
∅
→
f
:
∅
⟶
1-1 onto
∅
↔
∅
:
∅
⟶
1-1 onto
∅
11
f1o0
⊢
∅
:
∅
⟶
1-1 onto
∅
12
9
10
11
ceqsexv2d
⊢
∃
f
f
:
∅
⟶
1-1 onto
∅
13
breng
⊢
∅
∈
V
∧
∅
∈
V
→
∅
≈
∅
↔
∃
f
f
:
∅
⟶
1-1 onto
∅
14
9
9
13
mp2an
⊢
∅
≈
∅
↔
∃
f
f
:
∅
⟶
1-1 onto
∅
15
12
14
mpbir
⊢
∅
≈
∅
16
breq2
⊢
A
=
∅
→
∅
≈
A
↔
∅
≈
∅
17
15
16
mpbiri
⊢
A
=
∅
→
∅
≈
A
18
8
17
impbii
⊢
∅
≈
A
↔
A
=
∅