Metamath Proof Explorer


Theorem en0r

Description: The empty set is equinumerous only to itself. (Contributed by BTernaryTau, 29-Nov-2024)

Ref Expression
Assertion en0r A A =

Proof

Step Hyp Ref Expression
1 encv A V A V
2 breng V A V A f f : 1-1 onto A
3 1 2 syl A A f f : 1-1 onto A
4 3 ibi A f f : 1-1 onto A
5 f1o00 f : 1-1 onto A f = A =
6 5 simprbi f : 1-1 onto A A =
7 6 exlimiv f f : 1-1 onto A A =
8 4 7 syl A A =
9 0ex V
10 f1oeq1 f = f : 1-1 onto : 1-1 onto
11 f1o0 : 1-1 onto
12 9 10 11 ceqsexv2d f f : 1-1 onto
13 breng V V f f : 1-1 onto
14 9 9 13 mp2an f f : 1-1 onto
15 12 14 mpbir
16 breq2 A = A
17 15 16 mpbiri A = A
18 8 17 impbii A A =