Description: A set with one element is a singleton. (Contributed by FL, 18-Aug-2008) Avoid ax-pow , ax-un . (Revised by BTernaryTau, 4-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | en1eqsn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | en1 | |
|
2 | eleq2 | |
|
3 | elsni | |
|
4 | 3 | sneqd | |
5 | 2 4 | syl6bi | |
6 | 5 | imp | |
7 | eqtr3 | |
|
8 | 6 7 | syldan | |
9 | 8 | ex | |
10 | 9 | exlimiv | |
11 | 1 10 | sylbi | |
12 | 11 | impcom | |