Metamath Proof Explorer


Theorem en1eqsn

Description: A set with one element is a singleton. (Contributed by FL, 18-Aug-2008) Avoid ax-pow , ax-un . (Revised by BTernaryTau, 4-Jan-2025)

Ref Expression
Assertion en1eqsn ABB1𝑜B=A

Proof

Step Hyp Ref Expression
1 en1 B1𝑜xB=x
2 eleq2 B=xABAx
3 elsni AxA=x
4 3 sneqd AxA=x
5 2 4 syl6bi B=xABA=x
6 5 imp B=xABA=x
7 eqtr3 B=xA=xB=A
8 6 7 syldan B=xABB=A
9 8 ex B=xABB=A
10 9 exlimiv xB=xABB=A
11 1 10 sylbi B1𝑜ABB=A
12 11 impcom ABB1𝑜B=A