Metamath Proof Explorer


Theorem en1eqsnOLD

Description: Obsolete version of en1eqsn as of 4-Jan-2025. (Contributed by FL, 18-Aug-2008) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion en1eqsnOLD ABB1𝑜B=A

Proof

Step Hyp Ref Expression
1 1onn 1𝑜ω
2 ssid 1𝑜1𝑜
3 ssnnfi 1𝑜ω1𝑜1𝑜1𝑜Fin
4 1 2 3 mp2an 1𝑜Fin
5 enfii 1𝑜FinB1𝑜BFin
6 4 5 mpan B1𝑜BFin
7 6 adantl ABB1𝑜BFin
8 snssi ABAB
9 8 adantr ABB1𝑜AB
10 ensn1g ABA1𝑜
11 ensym B1𝑜1𝑜B
12 entr A1𝑜1𝑜BAB
13 10 11 12 syl2an ABB1𝑜AB
14 fisseneq BFinABABA=B
15 7 9 13 14 syl3anc ABB1𝑜A=B
16 15 eqcomd ABB1𝑜B=A