| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1onn | ⊢ 1o  ∈  ω | 
						
							| 2 |  | ssid | ⊢ 1o  ⊆  1o | 
						
							| 3 |  | ssnnfi | ⊢ ( ( 1o  ∈  ω  ∧  1o  ⊆  1o )  →  1o  ∈  Fin ) | 
						
							| 4 | 1 2 3 | mp2an | ⊢ 1o  ∈  Fin | 
						
							| 5 |  | enfii | ⊢ ( ( 1o  ∈  Fin  ∧  𝐵  ≈  1o )  →  𝐵  ∈  Fin ) | 
						
							| 6 | 4 5 | mpan | ⊢ ( 𝐵  ≈  1o  →  𝐵  ∈  Fin ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( 𝐴  ∈  𝐵  ∧  𝐵  ≈  1o )  →  𝐵  ∈  Fin ) | 
						
							| 8 |  | snssi | ⊢ ( 𝐴  ∈  𝐵  →  { 𝐴 }  ⊆  𝐵 ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝐴  ∈  𝐵  ∧  𝐵  ≈  1o )  →  { 𝐴 }  ⊆  𝐵 ) | 
						
							| 10 |  | ensn1g | ⊢ ( 𝐴  ∈  𝐵  →  { 𝐴 }  ≈  1o ) | 
						
							| 11 |  | ensym | ⊢ ( 𝐵  ≈  1o  →  1o  ≈  𝐵 ) | 
						
							| 12 |  | entr | ⊢ ( ( { 𝐴 }  ≈  1o  ∧  1o  ≈  𝐵 )  →  { 𝐴 }  ≈  𝐵 ) | 
						
							| 13 | 10 11 12 | syl2an | ⊢ ( ( 𝐴  ∈  𝐵  ∧  𝐵  ≈  1o )  →  { 𝐴 }  ≈  𝐵 ) | 
						
							| 14 |  | fisseneq | ⊢ ( ( 𝐵  ∈  Fin  ∧  { 𝐴 }  ⊆  𝐵  ∧  { 𝐴 }  ≈  𝐵 )  →  { 𝐴 }  =  𝐵 ) | 
						
							| 15 | 7 9 13 14 | syl3anc | ⊢ ( ( 𝐴  ∈  𝐵  ∧  𝐵  ≈  1o )  →  { 𝐴 }  =  𝐵 ) | 
						
							| 16 | 15 | eqcomd | ⊢ ( ( 𝐴  ∈  𝐵  ∧  𝐵  ≈  1o )  →  𝐵  =  { 𝐴 } ) |