Metamath Proof Explorer


Theorem ensucne0OLD

Description: A class equinumerous to a successor is never empty. (Contributed by RP, 11-Nov-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion ensucne0OLD AsucBA

Proof

Step Hyp Ref Expression
1 encv AsucBAVsucBV
2 1 simprd AsucBsucBV
3 en0 AA=
4 3 biimpri A=A
5 4 a1i sucBVA=A
6 nsuceq0 sucB
7 0sdomg sucBVsucBsucB
8 6 7 mpbiri sucBVsucB
9 5 8 jctird sucBVA=AsucB
10 ensdomtr AsucBAsucB
11 sdomnen AsucB¬AsucB
12 10 11 syl AsucB¬AsucB
13 9 12 syl6 sucBVA=¬AsucB
14 13 necon2ad sucBVAsucBA
15 2 14 mpcom AsucBA