Metamath Proof Explorer


Theorem eqabbOLD

Description: Obsolete version of eqabb as of 12-Feb-2025. (Contributed by NM, 26-May-1993) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion eqabbOLD A=x|φxxAφ

Proof

Step Hyp Ref Expression
1 ax-5 yAxyA
2 hbab1 yx|φxyx|φ
3 1 2 cleqh A=x|φxxAxx|φ
4 abid xx|φφ
5 4 bibi2i xAxx|φxAφ
6 5 albii xxAxx|φxxAφ
7 3 6 bitri A=x|φxxAφ