Metamath Proof Explorer


Theorem eqfnfv

Description: Equality of functions is determined by their values. Special case of Exercise 4 of TakeutiZaring p. 28 (with domain equality omitted). (Contributed by NM, 3-Aug-1994) (Proof shortened by Andrew Salmon, 22-Oct-2011) (Proof shortened by Mario Carneiro, 31-Aug-2015)

Ref Expression
Assertion eqfnfv FFnAGFnAF=GxAFx=Gx

Proof

Step Hyp Ref Expression
1 dffn5 FFnAF=xAFx
2 dffn5 GFnAG=xAGx
3 eqeq12 F=xAFxG=xAGxF=GxAFx=xAGx
4 1 2 3 syl2anb FFnAGFnAF=GxAFx=xAGx
5 fvex FxV
6 5 rgenw xAFxV
7 mpteqb xAFxVxAFx=xAGxxAFx=Gx
8 6 7 ax-mp xAFx=xAGxxAFx=Gx
9 4 8 bitrdi FFnAGFnAF=GxAFx=Gx