Metamath Proof Explorer


Theorem eqfnfv2

Description: Equality of functions is determined by their values. Exercise 4 of TakeutiZaring p. 28. (Contributed by NM, 3-Aug-1994) (Revised by Mario Carneiro, 31-Aug-2015)

Ref Expression
Assertion eqfnfv2 FFnAGFnBF=GA=BxAFx=Gx

Proof

Step Hyp Ref Expression
1 dmeq F=GdomF=domG
2 fndm FFnAdomF=A
3 fndm GFnBdomG=B
4 2 3 eqeqan12d FFnAGFnBdomF=domGA=B
5 1 4 imbitrid FFnAGFnBF=GA=B
6 5 pm4.71rd FFnAGFnBF=GA=BF=G
7 fneq2 A=BGFnAGFnB
8 7 biimparc GFnBA=BGFnA
9 eqfnfv FFnAGFnAF=GxAFx=Gx
10 8 9 sylan2 FFnAGFnBA=BF=GxAFx=Gx
11 10 anassrs FFnAGFnBA=BF=GxAFx=Gx
12 11 pm5.32da FFnAGFnBA=BF=GA=BxAFx=Gx
13 6 12 bitrd FFnAGFnBF=GA=BxAFx=Gx